Qualitative properties of solutions for mixed type functional-differential equations with maxima

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal solutions for certain type of fractional differential equations with maxima

In this article, we employ the Tarski’s fixed point theorem to establish the existence of extremal solutions for fractional differential equations with maxima.

متن کامل

Orthogonal stability of mixed type additive and cubic functional equations

In this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$  is orthogonality in the sense of Ratz.

متن کامل

Center Manifold Theory for Functional Differential Equations of Mixed Type

We study the behaviour of solutions to nonlinear autonomous functional differential equations of mixed type in the neighbourhood of an equilibrium. We show that all solutions that remain sufficiently close to an equilibrium can be captured on a finite dimensional invariant center manifold, that inherits the smoothness of the nonlinearity. In addition, we provide a Hopf bifurcation theorem for s...

متن کامل

Equivariant Hopf bifurcation for functional differential equations of mixed type

In this paper we employ the Lyapunov–Schmidt procedure to set up equivariant Hopf bifurcation theory of functional differential equations of mixed type. In the process we derive criteria for the existence and direction of branches of bifurcating periodic solutions in terms of the original system, avoiding the process of center manifold reduction. © 2010 Elsevier Ltd. All rights reserved.

متن کامل

Multiple periodic solutions to a class of second-order nonlinear mixed-type functional differential equations

where τ, σ , and c are constants in R with τ ≥ 0, σ ≥ 0, |c| < 1, g(t,x) is a T(> 0)-periodic function in t > 0, and for an arbitrary bounded domain E ⊂ R, g(t,x) is a Lipschitz function in [0,T] × E, p ∈ C(R,R), p(t +T) = p(t), and ∫ T 0 p(t)dt = 0. They obtained some sufficient conditions to guarantee the existence, at least a T-periodic solution, for this system. But, for the existence of pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Miskolc Mathematical Notes

سال: 2019

ISSN: 1787-2405,1787-2413

DOI: 10.18514/mmn.2019.1946